

ABSTRACT OS-2478: Oral Presentation

VRON-0200, a therapeutic HBV vaccine with an intrinsic checkpoint inhibitor, elicits broad CD8⁺T cell responses and sustained antiviral declines in preclinical studies

Hasanpourghadi M¹; Luber A²; Magowan C²; Zhou X¹; Ertl HCJ¹ ¹The Wistar Institute, Philadelphia, PA; ²Virion Therapeutics, Newark, DE

- Dr. Ertl is a co-founder of Virion Therapeutics, LLC & Professor, Vaccine and Immunotherapy Center, The Wistar Institute^{*}
- Dr. Luber is a co-founder of Virion Therapeutics, LLC and has equity shares in the company
- Mr. Magowan has equity shares in Virion Therapeutics, LLC

Virion Therapeutics has provided funding to the Ertl laboratory at The Wistar Institute

*Dr. Ertl is an inventor of patented technologies licensed to Virion, she receives research funding support from and has an equity interest in Virion Therapeutics and consults for several companies.

Background CD8⁺ T Cell Impairment and Chronic HBV Infection

- CD8⁺ T cells become impaired during chronic HBV infections, resulting in loss of viral control
- Immune modulators & therapeutic vaccines for chronic HBV have shown limited clinical benefits^{1–5}
 - "Rescue" of T cells with PD-1 checkpoint blockade is limited by:
 - ✓ Irreversible epigenetic changes in most HBV-specific T cells
 - ✓ Serious "off target" side effects in an otherwise healthy population

• Stimulation of naïve HBV-specific T cells by traditional therapeutic vaccines

- Likely ineffective as most T cells to immunodominant HBV-specific epitopes are already activated
- Optimized vaccine approaches that induce a response of naïve T cells to *de novo* epitopes may be able to restore viral control

1. Boni C, et al. Gastroenterology. 2019;157:227-41; 2. Gane E, et al. J Hepatol. 2019;71:900-7; 3. Janssen H, et al. AASLD. 2020. Abstract 0829;

4. Zoulim F, et al. Hum Vaccin Immunother. 2020;16:388-399; 5. Jansen D, et al. Clin Trans Immunology. 2021;10:e1232. doi: 10.1002/cti2.1232.

CD, cluster of differentiation; HBV, hepatitis B virus; PD-1, programmed cell death protein 1.

VRON-0200 HBV Core & Pol Targeted Therapeutic Vaccine

1. Vaccine antigen: HBV core & pol antigens

- Consensus sequences of core & pol for genotypes A–D
- S antigen, an immune decoy, was excluded
- Optimized for MHC class I binding epitopes using HLA prediction algorithms
- Regions associated with preventing flares/viral breakthrough included¹⁻⁴

2. Vaccine carrier: Chimpanzee-derived adenoviral vectors

- Limited pre-existing neutralizing antibodies – optimal transgene product expression
- Heterologous vectors with no cross immunity prime and boost evaluations

AEs, adverse events; HLA, human leukocyte antigen;

MHC, major histocompatibility complex; pol, polymerase.

1. Hoogeveen RC, et al. Gut. 2019; 68:893-904; 2. Rivino L, et al. J Clin Invest. 2018;128:668-81;

3. Vaccine adjuvant: Glycoprotein D

- Genetically encoded inhibitor of an early T cell checkpoint
- Strengthens and broadens CD8⁺ T cell activation
- Locally acting, rapidly cleared; low risk for "off target" AEs

Challenge model: AAV8-1.3HBV

Liver trophic AAV resulting in high loads of HBV in serum

^{3.} Cheng Y, et al. Sci Immunol. 2019;4:eaau6905; 4. Boni C, et al. Gastroentrology. 2012;143:963-73.

Herpes Simplex Virus Glycoprotein D

The Genetically Encoded Checkpoint Inhibitor Adjuvant in VRON-0200

APC, antigen presenting cell; BTLA, B- and T-lymphocyte attenuator; HVEM, herpes virus entry mediator; pol, polymerase; TCR, T cell receptor. 1. Stiles KM, et al. *J Virol*. 2010;84:11646-60.

Initial Preclinical Proof of Concept Single Antigen Studies

****P-value between 0.0001–0.001 ;*****P-value <0.0001 by ordinary one-way ANOVA.

All experiments performed with C57Bl/6 mice.

AAV, adeno-associated virus; AdC, chimpanzee derived adenovirus vector; ANOVA, analysis of variance; IFNγ, interferon gamma; IM, intramuscular;

vp, virus particles.

1. Hasanpourghadi M, et al. *J Hepatol.* 2020;73(Suppl 1):S572 Presented at the EASL/DISL Meeting 2020 (Abstract 1303); 2. Hasanpourghadi, M. et al. *Hepatology.* 2020;72(Suppl 1):505A. Presented at the AASLD Meeting 2020 (Abstract 826).

Oral presentation at EASL - The International Liver Congress 2021. Abstract 2478.

Methods Combination HBV PolN, PolC & Core Studies

Vectors investigated^{*}

AdC(6/7)-gDPoIN, -gDPoIC, -gDCore

 N- or C-terminal part of polymerase or core within gD

AdC(6/7)-gDHBV2 (VRON-0200)

• Polymerase + core within gD

AdC(6/7)-HBV2

Polymerase + core without gD

AdC(6/7)-gDHBVsd[^]

 Subdominant regions of N-terminal part of polymerase + C-terminal part of polymerase + core within gD

*AdC6 and AdC7 are heterologous chimpanzee adenoviral viral vectors of serotype 6 and 7.

^gDHBVsd also referred to as AdC6-gDHBV3 and AdC7-gDHBV3 when combined with AdC6 and AdC7 vectors, respectively. ICS, intracellular cytokine staining; IV, intravenous; sd, subdominant; vg, viral genome; vp, virus particles.

Analyses of T cell responses

Post-vaccination analyses of T cell responses in blood, spleen, and liver

- Intracellular cytokine staining (ICS) for IFNγ
- MHC I tetramer staining combined with phenotypic analyses
- Epitope mapping of HBV-specific CD8⁺ T cells by ICS

Challenge experiment

AAV8-1.3HBV AAV vector model – 1 x 10⁹ vg IV

Vaccine vectors – Single IM dose of 1 x 10¹⁰ vp

Administered 4 weeks after AAV8-1.3HBV injection

VRON-0200 Induces CD8⁺ T Cell Responses to Core and Polymerase

CD44⁺/CD8⁺ Epitope-Specific T Cell Response (Spleen)

Five male C57BI/6 mice received either a high- or low-dose prime and boost of heterologous AdC. ICS was performed on spleens of sacrificed animals at study completion. Results shown here are from animals administered low dose (high dose shows similar pattern). gDHBVsd also referred to as AdC6-gDHBV3 and AdC7-gDHBV3 when combined with AdC6 and AdC7 vectors, respectively.

Magnitude of VRON-0200-Induced Immune Responses Similar to Those to gDPoIN

T cell responses in individual C57BI/6 mice were assessed from blood sampled at week 8 after the prime (prior to the boost) and then 4 weeks after the heterologous boost.

CD8⁺ T cell responses to the dominant polymerase epitope were assessed in C57BI/6 mice upon staining with an HBV-Pol-specific MHC class I tetramer. Tetramer-binding T cells were detected in blood 4 weeks after a prime and in livers after prime and boost.

tet+, tetramer staining; gDHBVsd also referred to as AdC6-gDHBV3 and AdC7-gDHBV3 when combined with AdC6 and AdC7 vectors, respectively.

gD Enhances Antiviral Activity, Which Correlates with CD8⁺ T Cell Responses

*Correlations for CD44+CD8+T cells: r-value -0.77, P<.0001.

BL, baseline; vgc, viral genome copies; VL - viral load.

gDHBVsd also referred to as AdC6-gDHBV3 and AdC7-gDHBV3 when combined with AdC6 and AdC7 vectors, respectively.

Spearman Rank Correlation

VRON-0200 vaccination

- Vaccination elicits potent and broad CD8⁺ T cell responses to HBV core & polymerase
- Vaccine-induced CD8⁺ T cells traffic to the liver
- Multi-log HBV DNA viral load declines after a single IM injection
 - ✓ gD required for optimal antiviral activity

✓ Vaccine-induced CD8⁺, but not CD4⁺ T cell responses correlate with antiviral activity

• A Phase 1b clinical study is planned (Q4 2022)

- Study population: HBeAg negative, on nucleos(t)ide therapy
- Prime only and prime & boost regimens

Acknowledgments

- Mikhail Novikov
- Dakota Newman
- Robert Ambrose