ABSTRACT OS-0490 Oral Presentation

Novel Early Checkpoint Modifier Demonstrates Broadened and Enhanced CD8⁺ T Cell Responses Across Multiple Preclinical Studies

Luber A¹, Currie S¹, Ertl HCJ²
¹Virion Therapeutics, Newark, DE; ²The Wistar Institute, Philadelphia, PA

Ertl HCJ, et al. Oral presentation at ASGCT 2022: Abstract #0490
Author Disclosures

• Co-founder of Virion Therapeutics

• Advisor roles with:
 • Freelance, Inc
 • Takeda
 • Biogen (board)
 • Regenxbio
 • Ring Therapeutics (board)
 • Canine Rabies Treatment Initiative (board)
Background: Use of an Early Checkpoint Modifier as a Vaccine Adjuvant

• **Traditional vaccine adjuvants:**
 • **Purpose:** Enhance, prolong or broaden immune responses to an antigen, delivered by a vaccine
 • **Function:** Increase adaptive responses by activating the innate immune system resulting in inflammation-associated side effects
 • **Adjuvants in use:** Mineral salts (aluminum hydroxide), liquid particles (MF59), microparticles (polylactic acid), immune modulators (PAMPS, e.g., dsRNA)

• **Herpes simplex virus (HSV-1) glycoprotein D (gD) adjuvant:**
 • Checkpoint modifier of early CD8+ T cell activation
 • Lowers the activation threshold – producing potent, prolonged, broad and highly functional antigen-specific CD8+ T cell responses

PAMP, pathogen-associated molecular patterns.

Ertl HCJ, et al. Oral presentation at ASGCT 2022: Abstract #0490
Herpes Simplex Virus Glycoprotein D
The Genetically Encoded Checkpoint Modifier Adjuvant

The gD fusion protein translocates to the cell surface, where it blocks BTLA-HVEM interaction, thereby increasing TcR signaling and allowing for co-stimulation through LIGHT.

Degradation of incorrectly produced fusion protein releases peptides from the antigen, which, upon binding to MHC class I, are recognized by CD8+ T cells.

Within APCs, Ad vector produces the fusion protein of gD + antigen of choice.

Following IM injection, VRON-infected APCs travel to regional draining lymph nodes.

APC, antigen presenting cell; BTLA, B- and T-lymphocyte attenuator; gD, glycoprotein D; HVEM, herpes virus entry mediator; IM, intramuscular; LIGHT, lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes; MHC, major histocompatibility complex; pol, polymerase; TCR, T cell receptor; VRON, Virion specific I/O therapy.

Methods: Basic Experimental Design

• Step 1
 • Clone antigen into the C-terminus of gD

• Step 2
 • Express the gD-antigen fusion protein by an adenovirus vector

• Step 3
 • Test the vector expressing the fusion protein compared with a vector expressing antigen only
 • In vitro QC (e.g. protein expression)
 • CD8⁺ T cell responses
 • Magnitude
 • Breadth
 • Duration
 • B cell responses
 • Vaccine efficacy studies

• Antigens tested for immunogenicity
 • HPV-16 – E7
 • HBV – core & polymerase
 • Melanoma – multi-epitope vaccine (Melapoly)
 • SARS-CoV2 – nucleoprotein
 • HIV – gag

• Vaccine efficacy studies
 • HPV-16 E7 – transgenic mouse model
 • HBV – AAV8-1.3HBV
 • Melanoma – transplantable tumor model (B16.F10)
Checkpoint Modifier HSV gD Enhances CD8+ T Cell Responses

HBV
(sequences of N-terminus of polymerase)

MELANOMA
(epitopes from Trp1, Trp2, gp100 and Braf)

HPV
(sequences of early oncoproteins)

Results reported as medians. HBV and HPV analysis via one-way ANOVA; Melanoma via two-ANOVA with Sidak correction. *p-value between 0.001–0.01; **p-value between 0.001–0.01; ***p-value >0.001. NBgD has a deletion to gD eliminating the herpes virus entry mediator binding site.

HBV, hepatitis B virus (gD-polN); HPV, human papillomavirus (gD-E7/6/5 detox); Melapoly: melanoma antigens (Trp-1, Trp-2, gp100, mutated BRAFV600E, antigen)

CD8, Cluster of Differentiation 8; gD, glycoprotein D; IFN, interferon; tet, tetramer.
Checkpoint Modifier HSV gD Enhances Both B and T Cell Responses (HIV gag)

CD8+ T cell responses to vectors expressing antigens fused to gD*

- gD
- gag
- gD gag

Gag-specific antibody response after immunization with AdC68 vectors expressing gD, Gag, or gD-Gag

* Mice were immunized i.m. either with 100 μg DNA or 1x10^10 virus particles of AdC68.
CD8^+ T Cell Responses

MELANOMA
- **Ag alone** (Melapoly)
- **gD + Ag** (Melapoly)

HBV
- **Single dose gD + Ag**
 (AdC6-gPolN)
- **Total IFN^+CD8^+**/CD8^+ = 4.4%
 # Peptides: 18

COVID-19 (Nucleoprotein)
- **CD8^+ T cell responses after priming**
 - **Ag alone** (AdC6-N)
 2x10^10 vp
 - **gD + Ag** (AdC6-gDN)
 2x10^10 vp
 - **gD + Ag** (AdC6-gDN)
 1x10^10 vp

Ertl HCJ, et al. Oral presentation at ASGCT 2022: Abstract #0490
Checkpoint Modifier HSV gD Enhances Vaccine Efficacy

Enhanced HBV virus decline in mice

- **Naive**
 - HBV
- **VRON-0200**

Enhanced HBV virus decline in mice.

Anti-tumor activity in mice

- **Naive**
- **gD-E7**
- **gD-E7/Melapoly**

Anti-tumor activity in mice.

Improved survival in mice

- **Naive**
- **gD + Ag**
- **Ag alone**

Improved survival in mice.

References

Abbreviations

- HBV, hepatitis B virus; HBV2, HBV core & pol; VRON-0200, gD fused to HBV core & pol; HPV, human papillomavirus; Ag, antigen; gD, glycoprotein D; Melapoly, melanoma antigens (Trp-1, Trp-2, gp100, mutated BRAFv600E); E7, HPV E7 oncoprotein.

Figure Legends

- Serum HBV DNA (copies/mL) over time for naive, HBV2, and VRON-0200 groups.
- Anti-tumor activity with gD-E7 and gD-E7/Melapoly compared to naive.
- Improved survival with gD + Ag and Ag alone compared to naive.

Statistical Significance

- Melapoly versus naive: p=0.0001; gD-Melapoly versus naive: p=0.0001; Melapoly versus gD-Melapoly: p=0.0018.
Conclusions

These preclinical data, using various infectious disease and cancer antigens/animal models, demonstrate the benefits of using a genetically encoded checkpoint modifier as an adjuvant:

- **Multifunctional:** Most adjuvants only increase the magnitude of response; HSV gD does more
 - **Key addition:** Broadens CD8+ T cell responses to include sub-dominant epitope recognition
- **Safety profile:** Low risk for “off target” adverse events
 - **gD adjuvant:** Only expressed locally at the site of injection, and in draining lymph nodes
- **Inexpensive:** No additional costs over that of the adenovirus vector alone
- **Scalability:** Millions of SARS-CoV-2 adenoviral vaccines produced

Initial gD-containing vaccine against chronic HBV infection to enter the clinic at end of 2022
Acknowledgements

We would like to thank the Ertl laboratory at The Wistar Institute, and specifically the following:

- **HPV and HIV models**: Marcio Lasaro
- **Melanoma model**: Ying Zhang
- **HBV model**: Mohadeseh Hasanpourghadi
- **COVID-19 model**: Mohadeseh Hasanpourghadi, Mikhail Novikov, Zhiquan Xiang
- **Vector production**: Xiang Zhou, Robert Ambrose, Dakota Newman

FUNDING: The G. Harold and Leila Y. Mathers Charitable Foundation, the Commonwealth of Pennsylvania, and the Wistar Science Discovery Fund, NIAID, Virion Therapeutics, LLC

FOR MORE INFORMATION: Contact H. Ertl at: ertl@wistar.org