ABSTRACT OS-0490 Oral Presentation

Novel Early Checkpoint Modifier Demonstrates Broadened and Enhanced CD8⁺ T Cell Responses Across Multiple Preclinical Studies

Luber A¹, Currie S¹, Ertl HCJ²

¹Virion Therapeutics, Newark, DE; ²The Wistar Institute, Philadelphia, PA

Ertl HCJ, et al. Oral presentation at ASGCT 2022: Abstract #0490

Author Disclosures

Co-founder of Virion Therapeutics

- Advisor roles with:
 - Freelance, Inc
 - Takeda
 - Biogen (board)

- Regenxbio
- Ring Therapeutics (board)
- Canine Rabies Treatment Initiative (board)

Background: Use of an Early Checkpoint Modifier as a Vaccine Adjuvant

• Traditional vaccine adjuvants:

- **Purpose**: Enhance, prolong or broaden immune responses to an antigen, delivered by a vaccine
- Function: Increase adaptive responses by activating the innate immune system resulting in inflammation-associated side effects
- Adjuvants in use: Mineral salts (aluminum hydroxide), liquid particles (MF59), microparticles (polylactic acid), immune modulators (PAMPS, e.g., dsRNA)

• Herpes simplex virus (HSV-1) glycoprotein D (gD) adjuvant:

- Checkpoint modifier of early CD8⁺ T cell activation
- Lowers the activation threshold producing potent, prolonged, broad and highly functional antigen-specific CD8⁺ T cell responses

Herpes Simplex Virus Glycoprotein D The Genetically Encoded Checkpoint Modifier Adjuvant^{1,2}

APC, antigen presenting cell; BTLA, B-and T-lymphocyte attenuator; gD, glycoprotein D; HVEM, herpes virus entry mediator; IM, intramuscular; LIGHT, lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes; MHC, major histocompatibility complex; pol, polymerase; TCR, T cell receptor; VRON, Virion specific I/O therapy. 1. Xiang ZQ, et al. ASCO-SITC Clinical Immuno-Oncology Symposium 2020, Abstract No. 71; 2. Stiles KM, et al. J Virol. 2010;84:11646–60.

Ertl HCJ, et al. Oral presentation at ASGCT 2022: Abstract #0490 ⁴

Methods: Basic Experimental Design

• Step 1

Clone antigen into the C-terminus of gD

• Step 2

 Express the gD-antigen fusion protein by an adenovirus vector

• Step 3

- Test the vector expressing the fusion protein compared with a vector expressing antigen only
 - In vitro QC (e.g. protein expression)
 - CD8⁺ T cell responses
 - Magnitude
 - Breadth
 - Duration
 - B cell responses
 - Vaccine efficacy studies

Antigens tested for immunogenicity

- HPV-16 E7
- HBV core & polymerase
- Melanoma multi-epitope vaccine (Melapoly)
- SARS-CoV2 nucleoprotein
- HIV gag

Vaccine efficacy studies

- HPV-16 E7 transgenic mouse model
- HBV AAV8-1.3HBV
- Melanoma transplantable tumor model (B16.F10)

Checkpoint Modifier HSV gD Enhances CD8⁺ T Cell Responses

HBV (sequences of N-terminus of polymerase) (epitopes from Trp1, Trp2, gp100 and Braf)

1. Hasanpourghadi M, et al. EASL 2021: Abstract OS-2478; 2. Zhang Y, et al. J Immunol 2014;193:1836–46; 3 Xiang Z, et al. ASCO-SITC Clinical Immuno-Oncology Symposium 2020: Abstract #71.

Results reported as medians. HBV and HPV analysis via one-way ANOVA; Melanoma via two-ANOVA with Sidak correction. *p-value between 0.001–0.01; **p-value between 0.001–0.01;

***p-value >0.0001. NBgD has a deletion to gD eliminating the herpes virus entry mediator binding site.

HBV, hepatitis B virus (gD-polN); HPV, human papillomavirus (gD-E7/6/5 detox); Melapoly: melanoma antigens (Trp-1, Trp-2, gp100, mutated BRAFv600E, antigen)

CD8, Cluster of Differentiation 8; gD, glycoprotein D; IFN, interferon; tet, tetramer.

Checkpoint Modifier HSV gD Enhances Both B and T Cell Responses (HIV gag)

CD8⁺ T cell responses to vectors expressing antigens fused to gD^{*1}

Gag-specific antibody response after immunization with AdC68 vectors expressing gD, Gag, or gD-Gag¹

*Mice were immunized by i.m. either with 100 μg DNA or 1x10¹⁰ virus particles of AdC68. 1. Lasaro M, et al. Nat Med 2008;14:205–12.

Checkpoint Modifier HSV gD Broadens CD8⁺ T Cell Responses

Zhang Y, et al. J Immunol 2014;193:1836–46; Hasanpourghadi M, et al. Virol J 2021;18:242–56; Novikov M et al. bioRxiv 2022; doi.org 10.1101. HBV, hepatitis B virus; HPV, human papillomavirus; Ag, antigen; gD, glycoprotein D; PolN, N terminus of HBV polymerase; Melapoly, melanoma antigens (Trp-1, Trp-2, gp100, mutated BRAFv600E).

Checkpoint Modifier HSV gD Enhances Vaccine Efficacy

VRON-0200 HBV

HPV

MELANOMA

Improved survival in mice³

Melapoly versus naive: p=0.0001; gD-Melapoly versus naive: p=0.0001: Melapoly versus gD-Melapoly: p=0.0018.

1. Hasanpourghadi M, et al. EASL 2021: Abstract OS-2478; 2. Lasaro M, et al. Mol Ther 2011;19:1727–36; 3. Zhang Y, et al. J Immunol 2014;193:1836–46. HBV, hepatitis B virus; HBV2, HBV core & pol; VRON-0200, gD fused to HBV core & pol; HPV, human papillomavirus; Ag, antigen; gD, glycoprotein D; Melapoly, melanoma antigens (Trp-1, Trp-2, gp100, mutated BRAFv600E); E7, HPV E7 oncoprotein.

Conclusions

These preclinical data, using various infectious disease and cancer antigens/animal models, demonstrate the benefits of using a genetically encoded checkpoint modifier as an adjuvant:

- **Multifunctional:** Most adjuvants only increase the magnitude of response; HSV gD does more
 - Key addition: Broadens CD8⁺ T cell responses to include sub-dominant epitope recognition
- Safety profile: Low risk for "off target" adverse events
 - **gD** adjuvant: Only expressed locally at the site of injection, and in draining lymph nodes
- Inexpensive: No additional costs over that of the adenovirus vector alone
- Scalability: Millions of SARS-CoV-2 adenoviral vaccines produced

Initial gD-containing vaccine against chronic HBV infection to enter the clinic at end of 2022

Acknowledgements

We would like to thank the Ertl laboratory at The Wistar Institute, and specifically the following:

- HPV and HIV models: Marcio Lasaro
- Melanoma model: Ying Zhang
- HBV model: Mohadeseh Hasanpourghadi

• Vector production: Xiang Zhou, Robert Ambrose, Dakota Newman

FUNDING: The G. Harold and Leila Y. Mathers Charitable Foundation, the Commonwealth of Pennsylvania, and the Wistar Science Discovery Fund, NIAID, Virion Therapeutics, LLC

FOR MORE INFORMATION: Contact H. Ertl at: ertl@wistar.org

