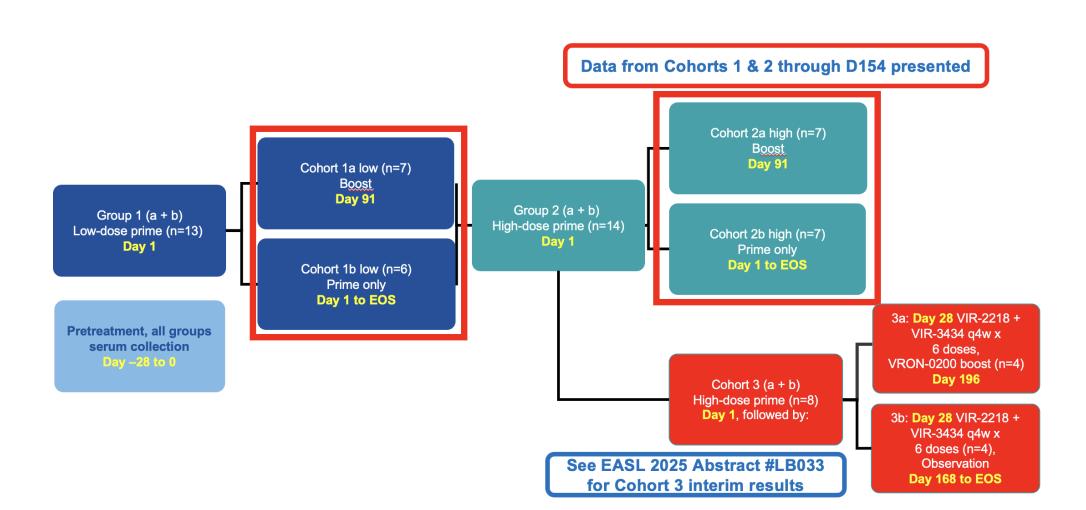
HBsAg declines, and T cell increases, observed in CHB patients: Interim results from P1b trial of VRON-0200, a novel checkpoint modifier, following prime only, and prime and boost dosing

<u>EJ GANE¹, SL CURRIE², A LUBER², TH LIM³, ME BONHOMME⁴, GLH WONG⁵</u> ¹New Zealand Liver Transplant Unit, Auckland City Hospital, University of Auckland, Auckland, New Zealand; ²Virion Therapeutics, Philadelphia, USA; ³Middlemore Hospital, Auckland, New Zealand; ⁴Laboratory Services, Vaccine Sciences Department, PPD, Part of Thermo Fisher Scientific, Richmond, USA; ⁵Medical Data Analytics Centre, Department of Medicine and Therapeutics, and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR China

BACKGROUND

- Despite preventative vaccines, chronic HBV infection remains a high unmet medical need¹ • Immune-based treatments are now considered necessary for HBV functional cure²
- VRON-0200 is an immune modulator for functional cure of HBV infection designed to enhance and broaden CD8+ T cells to HBV core & pol³⁻⁶
- In chronically HBV-infected patients, VRON-0200 has previously demonstrated⁷ A favorable safety and tolerability profile
- Immunogenicity Anti-HBV activity (HBsAg declines)
- VRON-0200 P1b study expanded to add a cohort to evaluate the safety and efficacy of VRON-0200 with the addition of other therapeutics agents [See EASL 2025 Abstract #LBP-033]


PURPOSE

• To report safety, immunogenicity, and HBsAg changes in chronically HBV-infected patients dosed with VRON-0200 prime only, and prime and boost regimens

METHODS

- This is a Phase 1b multi-center, multi-national, open label, clinical trial in chronic HBV-infected, virally suppressed adults between 18 and 55 years of age, with HBsAg levels ≤500 IU/mL, and no evidence of advanced liver fibrosis or cirrhosis (Figure 1) (NCT06070051)
- Cohort $1(1x10^{10}vp)$: low dose): patients are randomized to receive either an i.m. injection of VRON-0200 low dose plus a VRON-0200 low dose boost at Day 91 (Cohort 1a), or VRON-0200 low dose prime only (Cohort 1b)
- Cohort 2 (5x10¹⁰vp: high dose): repeats Cohort 1 design but with a higher dose - Cohort 3 (combination cohort): patients are randomized to receive a high dose VRON-0200 prime on Day 1, plus monthly elebsiran plus tobevibart dosing, starting on Day 28, alone, or in combination with a VRON-0200 high dose boost on Day 196 [See EASL 2025 Abstract **#LBP-033**]
- Patients were evaluated for safety, immunologic and virologic measures at multiple time points • This analysis includes VRON-0200 monotherapy Cohort 1 and Cohort 2 safety, immunogenicity and HBsAg data through Day 154, with a data cutoff of March 31, 2025, and PBMC ELISpot data, with a data cutoff of January 6, 2025

Figure 1. Study Schema

METHODS II: Clinical Assessments

Safety

• Physical exams were performed, and serum were collected for clinical laboratory assessments, including liver function tests

HBsAg (Quantitative)

- ELISA HBsAg II Quant; LLOD: 0.05 IU/mL
- Absolute changes (log₁₀IU/mL)

Immunologic assessments (PBMC)

- IFN γ ELISpot to core, pol, and surface peptide pools; LLOD < 30 SFU/million PBMCs
- Prime Only: Immunologic "responder" 2 consecutive core + pol ELISpot measurements at Day 28 > average of the 2 pre-treatment timepoints, and above the LLOD
- One-side paired t-test assess sum of core + pol ELISpot measurements from average of the pre-treatment values compared to Day 28, and Day 91, respectively, for each patient
- Boost: Cohorts 1a/2a included patients with evaluable samples at Day 104 (14 days post-Boost) - One-sided paired t-test – assess sum of core + pol ELISpot measurements from Day 104 compared to Day 91 (pre-boost value), respectively, for each patient

RESULTS **DEMOGRAPHICS AND BASELINE CHARACTERISTICS (N=27)** • **Table 1** lists the demographics for 27 patients N

Grade 1

	Cohort 1a (n=6)	Cohort 1b (n=7)	Cohort 2a (n=7)	Cohort 2b (n=7)	Overall (N=27)
Any AE, n	7	9	18	9	43
Grade 1	6	7	12	6	32
Grade 2	1	2	6	3	12
Grade 3 or 4	0	0	0	0	0
SAE, n	0	0	0	0	o
TRAEs, n	2	3	10	5	20
AEs leading to Study Drug Discontinuation, n	0	0	0	0	0
Study Discontinuations, n	0	0	0	0	0
ALT elevations, n					
Grade 1	0	0	0	0	0
Grade 2	0	0	0	0	0

CONCLUSIONS

- Treatment with VRON-0200 Prime, and Prime and Boost, in chronically HBV-infected patients:
- Was safe and well-tolerated with 8,295 patient safety days reported (N=27)

- Declines initiated at Day 28 and deepened over time • Factors associated with HBsAg declines are being evaluated further
- The impact of IFN γ in the blood is unclear
- This dose can be conveniently administered and will be used for future VRON-0200 studies • Initial results from the first VRON-0200 combination regimen (Cohort 3) are available at EASL 2025 Abstract
- #LBP-033

- 22 were male (82%), mean age of 46 years, and baseline HBsAg of 177 IU/mL (range: 10-623 IU/mL)

ble 1: Patient Demographics (
	Cohort 1a (n=6)	Cohort 1b (n=7)	Cohort 2a (n=7)	Cohort 2b (n=7)	Overall (N=27)
dian age, yrs (range)	43 (37-52)	49 (41-54)	47 (45-54)	46 (41-55)	46 (37-55)
x, n (%) Male Female	6(100%) 0 (0%)	6 (86%) 1 (14%)	4 (57%) 3 (43%)	6 (86%) 1 (14%)	22 (81%) 5 (19%)
ce, n (%) Asian Native Hawaiian or Other Pacific Islander White Other	5 (83%) 0 (0%) 0 (0%) 1 (17%)	6 (86%) 0 (0%) 1 (14%) 0 (0%)	6 (86%) 1 (14%) 0 (0%) 0 (0%)	7(100%) 0 (0%) 0 (0%) 0 (0%)	24 (89%) 1 (4%) 1 (4%) 1 (4%)
l (kg/m²), median (range)	29.3 (27.3 - 31.7)	24.8 (20.2 – 32)	27.4 (22.9 – 31.6)	23 (19.7 – 27.7)	26.7 (19.7 – 32)
seline HBsAg Levels (IU/mL), median (range)	222 (29 - 319)	273 (16 - 623)	124.8 (17.1 – 322.2)	226 (9.66 – 562.6)	177.1 (9.66 – 623*)
seline HBsAg Levels, n (%) >500 IU/mL 200 - <u><</u> 500 IU/mL 100 – 199 IU/mL <100 IU/mL	0 (0%) 4 (67%) 0 (0%) 2 (33%)	1 (14%) 2 (29%) 2 (29%) 2 (29%)	0 (0%) 1 (14%) 4 (57%) 2 (29%)	1 (14%)* 3 (43%) 1 (14%) 2 (29%)	2 (7%)* 10 (37%) 7 (26%) 8 (30%)
seline ALT (x ULN), n (%) <1 x ULN 1 to 1.5x ULN 1.6 x <u><</u> 2x ULN	5 (83%) 0 (0%) 1 (17%)	7 (100%) 0 (0%) 0 (0%)	6 (86%) 1 (14%) 0 (0%)	6 (86%) 1 (14%) 0 (0%)	24 (89%) 2 (7%) 1 (4%)
sAg Status at Baseline, n (%) Negative Positive	6 (100%) 0 (0%)	6 (80%) 1 (20%)	7 (100%) 0 (0%)	7 (100%) 0 (0%)	26 (96%) 1 (4%)

SAFETY AND TOLERABILITY

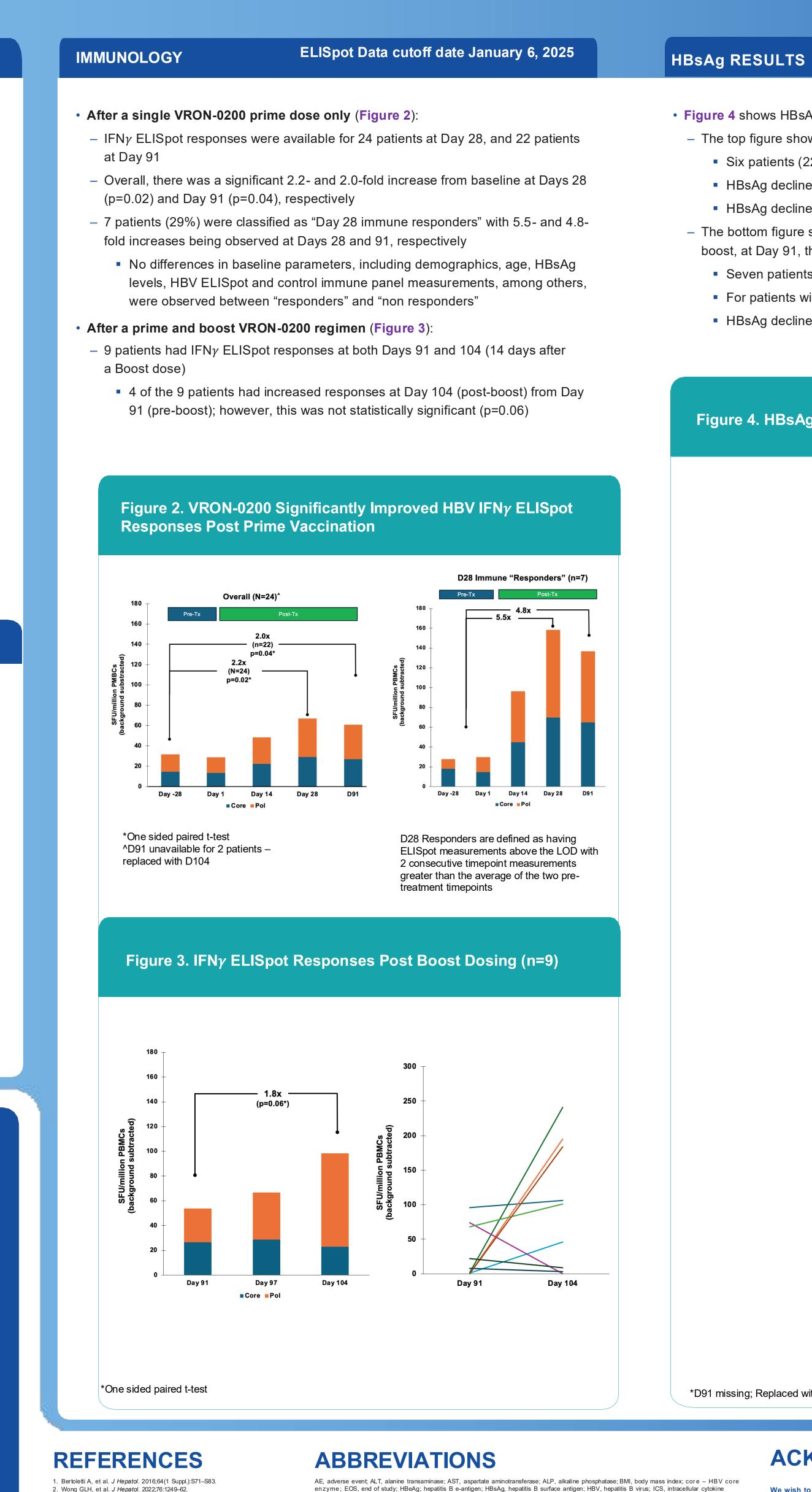
• There are 8,295 total patient safety days reported. VRON-0200 was well tolerated with 43 adverse event being reported in 16 patients (Table 2) - There were no SAEs, treatment discontinuations, or treatment-related clinical laboratory abnormalities, including liver function tests (not shown) - Twenty treatment-related adverse events (TRAEs) were reported; 3 were Grade 2 (eczema; myalgia, injection site reaction); all other TRAEs were

- Symptoms have resolved in all patients

- No differences were observed between low- and high-dose, prime, and prime boost regimens
- S-antigen declines were observed in ~25% of patients, despite the fact VRON-0200 does NOT target S
- A VRON-0200 boost dose at Day 91 did not improve responses
- The VRON-0200 high dose was well tolerated and displayed anti-HBV activity

• These data support the continued study of VRON-0200 as a safe and well tolerated, easy-to-administer, potential IFN-sparing immunotherapy, alone or in combination, for HBV Functional Cure

> Presented at EASL 2025, 7–10 May, Amsterdam, the **Netherlands**


3. Luber A, et al. ESMO TAT 2021: Abstract 143

5. Stiles KM, et al. J Virol. 2010;84(22):11646–60.

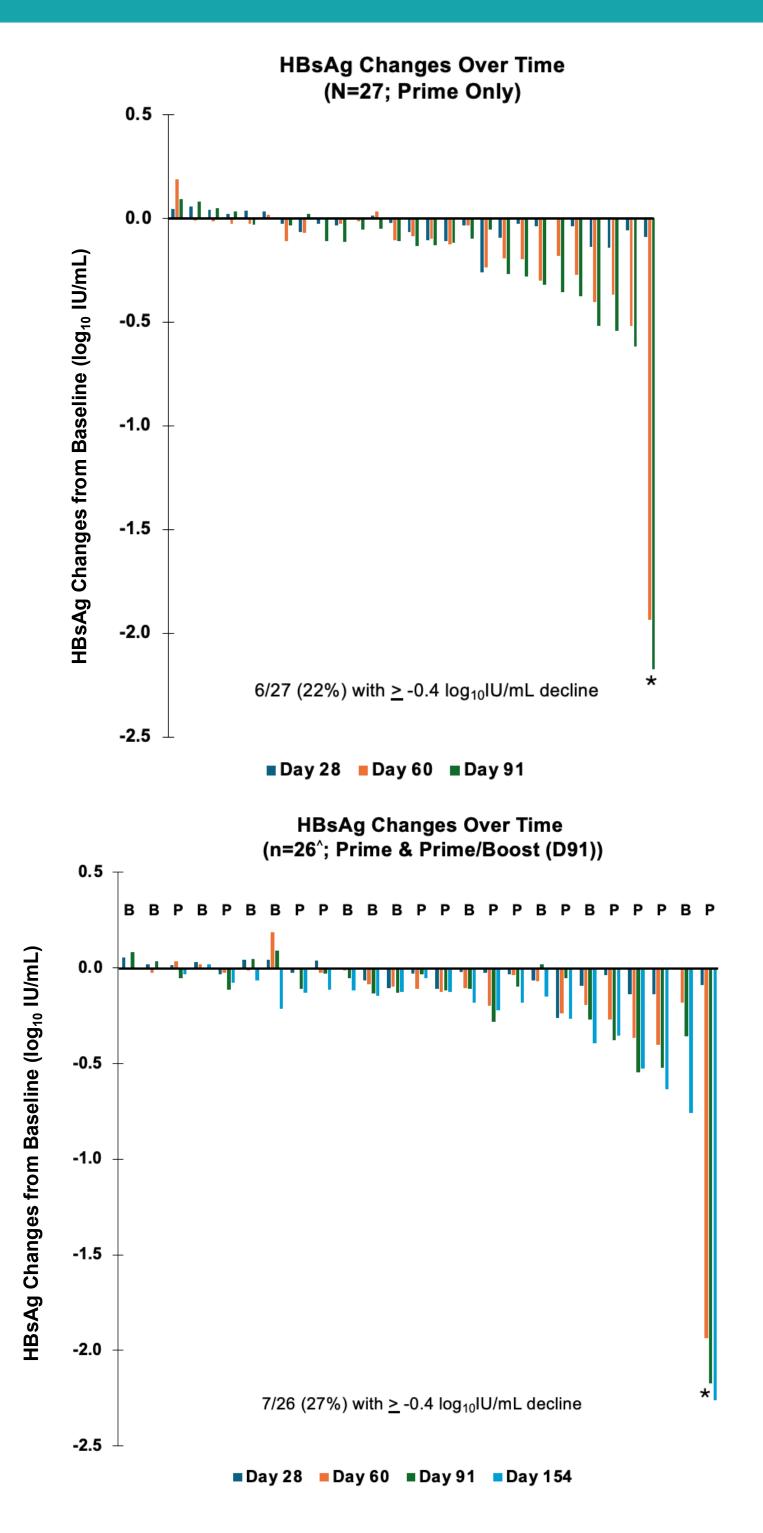
Wong GLH, et al. APASL 2025: Abstract #OP0242.

6. Virion Therapeutics, LLC. Data on file; 2025.

4. Xiang ZQ, et al. ASCO-SITC Clinical Immuno-Oncology Symposium 2020: Abstract 7

staining: IFNv. interferon-gamma: IU. international unit: LLOD, lower limit of detection;; PBMC, peripheral blood mononuclear cell; Pol, polymerase; SAE

serious adverse event; SFU, spot-forming unit; TRAE, treatment-related adverse event; Tx, treatment; ULN, upper limit normal; vp, viral particles.


Viral Hepatitis Abstract #1404

Data cutoff: March 31, 2025

- **Figure 4** shows HBsAg changes over time:
- The top figure shows changes in 27 patients, following a single VRON-0200 prime only dose
- Six patients (22%) had a \geq 0.4log₁₀IU/mL HBsAg change from baseline
- HBsAg declines were observed in patients starting at Day 28
- HBsAg declines were observed in both low- and high-dose VRON-0200 treated patients
- The bottom figure shows changes in 26 patients following a Day 1 VRON-0200 prime, alone, or in combination with a boost, at Day 91, through Day 154
- Seven patients (27%) had a \geq 0.4 log₁₀IU/mL decline from baseline
- For patients with HBsAg declines, the decline deepened over time
- HBsAg declines were not enhanced following a boost dose at Day 91

Figure 4. HBsAg Changes Over Time

*D91 missing; Replaced with D104; P – Prime only Day 1; B – Prime on Day 1, Boost on Day 91; ^One patient at D118 with -0.6 log₁₀IUmL decline included

ACKNOWLEDGEMENTS

We wish to thank all the study patients and their families, as well as the study investigators, study coordinators, and study teams, including:

NZ – Auckland City Hospital: Ed Gane, William Abbott, Manish Patel, and Ghada Sarah Hong Kong – The Chinese University of Hong Kong/Prince of Wales Hospital: Grace Wong, Angel Chim, Sally Shu, Julie L Leung, Pete Tse, Kat Kwan, Christy Fong, Jackie Fung, Jennifer Ng, and Cheryl Leung NZ - Middlemore Hospital: Tien huey Lim and Emma Dorsey

PPD/BioALabs: Olivia Briskin, Jason Duncan, and Mark Zavori

All authors contributed to, and approved, the poster.

ProTrials/Novotech: Brock Boyce, Paul Donnelly, Sabiqah Muhammad, Sazlyna Mohd, Sazlly Lim, Marta Urbanek, and Jody Wu Virion Therapeutics: Tony Baca, Janice Bennett, Larissa Haut, and Paula MacDonald

DISCLOSURES

d Gane has served as an advisor and/or speaker for AbbVie. Abbott Diagnostics Alio Arbutus, Arrowhead, Assembly, Dicerna, Gilead Sciences, GlaxoSmithKline, Intellia, Janssen, Merck, Novartis, Precision Biosciences, Genentech-Roche, Tune, Vaccitech, Vir Biotechnology, and Virion Therapeutics

FOR MORE INFORMATION Contact Dr. Sue Currie at: scurrie@viriontx.com for permission to reprint and/or distribute Access: VirionTx.com for more information and publications

THIS STUDY WAS FUNDED BY VIRION THERAPEUTICS